

Georges-Köhler Allee, Geb. 51 D-79110 Freiburg lausen@informatik.uni-freiburg.de schaetzl@informatik.uni-freiburg.de zablocki@informatik.uni-freiburg.de

Advanced Information Systems Summerterm 2011 12.05.2011

2. Exercise Sheet: Time

Submission: 19.05.2011 Discussion: 19.05.2011

Submission Guidlines: We will discuss the solutions to the exercise sheet on 19.05.2011. If you want to have comments on your solutions you can submit them after the lesson.

Exercise 1 (Network Time Protocol NTP)

A client attempts to synchronize with a time server. It records the round-trip times and timestamps returned by the server as given:

Round-trip in msec	Time (hr:min:sec)
22	10:54:23.674
25	10:54:25.450
20	10:54:28.342

- a) Which of these times should it use to set its clock? To what time should it set it? Estimate the accuracy of the setting with respect to the server's clock.
- b) If it is known that the time between sending and receiving a message in the system concerned is at least 8 ms, do your answers change?
- c) Assume it is required to synchronize a file server's clock to within +/-1 millisecond. Discuss this in relation to Cristian's algorithm.

Exercise 2 (Lamport-Clock)

Show that for a Lamport-Clock and events e, e' it holds: $e \rightarrow e' \Rightarrow C(e) < C(e')$.

Exercise 3 (Lamport's and Mattern's algorithm)

Consider processes p_1 , p_2 , and p_3 with associated events a, ..., f as shown in the figure:

*p*₁₋₋₋*a*_____>

*p*₂.....*c*.....*d*......>

*p*₃.....*e*.....*f*....*>*

Processes interchange messages m_1 and m_2 , where $send(m_1) = b$ and $receive(m_1) = c$, respectively, $send(m_2) = d$ and $receive(m_2) = f$.

- a) Which events are related by the happened-before relation and which are not, i.e. are concurrent?
- b) Assume each process maintains a local logical clock. Assign to each event a timestamp according to Lamport's algorithm. Fill in the following table.

а	b	С	d	е	f

c) Assign to each event a vector timestamp according to Mattern's algorithm. Fill in the following table.

а	b	с	d	e	f

d) Consider three processes *p*, *q*, *r* with *n*, *m*, *k* events, respectively. Processes may interchange messages. Does there exist a sequence of events, such that when applying Mattern's algorithm, the following vector timestamps are derived? Give an example or explain why such a sequence does not exist.

$$\left(\begin{array}{c}n\\m\\0\end{array}\right) \text{ and } \left(\begin{array}{c}0\\m\\k\end{array}\right)$$

Exercise 4 (Mattern's algorithm)

Assume logical time is based on Mattern's vector timestamps. During execution of a set of processes some events happen which imply the following set of vector timestamps:

((0)		(1)		(0)		(0)		(0)		(2)		(0)))
ł	$e_1:$	1	<i>, e</i> ₂ :	0	, e3 :	3	, e ₄ :	2	, e ₅ :	0	, e ₆ :	3	, e ₇ :	2	}
l		(1)		(0))	(1)		(2)		(1)		(1)		(1)]]

- a) Which events are related by the happened-before relation and which are not, i.e. are concurrent?
- b) Have there any messages been sent between the processes? Give the involved processes and the respective send- and receive-events.
- c) Complete the following figure by assigning events $e_1 \dots e_7$ and possible messages between processes. Physical time goes from left to right.

